Situational tasks on a topic with answers

1. Find the activity of the investigational drug taken in the amount of 0.02 mCi after 23 days, if the half-life is T = 46 days.

Answer: $A = 1.4 \cdot 10^{-5} \text{ Ci}.$

2. Find the activity of a preparation if 10,000 nuclei of this substance disintegrate within 10 minutes.

Answer: A = 16.7 Bq.

3. Calculate the number of nuclei N, decayed during the first day, if the initial number of nuclei is equal to $N_0 = 10^{22}$.

Answer: $N-N_0 = 0.75 \times 10^{22}$.

4. A body weighing 60 kg during 6 hours absorbed 1 J of energy. Find the absorbed dose and absorbed dose rate in SI units and in non-SI units.

Answer: D = 0.017 Gy, D = 1.7 rad; P = 2.8×10^{-3} Gy / h, P = 0.28 rad / h.

5. The absorbed dose from gamma radiation was 10 rad, and from alpha radiation - 20 rad. Find the total equivalent dose if $K_g = 1$; $K_a = 20$.

Answer: H = 410 rem.

6. A point source of 60 Co is transported within 48 hours. Source activity A = 5.4 mCi. Determine the exposure dose that the forwarder can receive if he is at a distance of 2 m from the source ($K_g = 1.29$).

Answer: X = 0.08 R.

7. The maximum permissible absorbed dose received under the action of γ -radiation is $D_g = 5 \times 10^{-2}$ J / kg. Find the absorbed energy of gamma photons if the mass of a person is 65 kg.

Answer: 3.25 J.

8. The maximum permissible dose for occupational exposure is 100 mrem / wk.

Recalculate this value for a year. What dose are we talking about?

Answer: H = 5 mrem / year. Equivalent dose.

9. Find the equivalent dose (H) received from X-rays if the exposure dose X is 5 R (f = 0.9).

Answer: 4.5 rem.

10. Find the exposure dose X if the absorbed dose D is 30 rad (f = 0.8).

Answer: 37.5 R.

11. The maximum permissible absorbed dose received under the action of g-radiation is $H_g = 5 \times 10^{-2}$ J / kg. Find the absorbed energy of gamma photons if the mass of a person is 70 kg.

Answer: 3.5 J.

12. Find the activity of the investigational drug taken in an amount of 0.01 mCi after 24 days if the half-life is T = 48 days.

Answer: 0.007 mCi.

13.Calculate the half-life if the decay constant is $\lambda = 0.0348 \text{ yr}^{-1}$.

Answer: ≈20 years.