1. Find the activity of the investigational drug taken in the amount of 0.02 mCi after 23 days, if the half-life is $\mathrm{T}=46$ days.
Answer: $\mathrm{A}=1.4 \cdot 10^{-5} \mathrm{Ci}$.
2. Find the activity of a preparation if 10,000 nuclei of this substance disintegrate within 10 minutes.
Answer: A = 16.7 Bq.
3. Calculate the number of nuclei N, decayed during the first day, if the initial number of nuclei is equal to $\mathrm{N}_{0}=10^{22}$.
Answer: $\mathrm{N}-\mathrm{N}_{0}=0.75 \times 10^{22}$.
4. A body weighing 60 kg during 6 hours absorbed 1 J of energy. Find the absorbed dose and absorbed dose rate in SI units and in non-SI units.
Answer: $\mathrm{D}=0.017 \mathrm{~Gy}, \mathrm{D}=1.7 \mathrm{rad} ; \mathrm{P}=2.8 \times 10^{-3} \mathrm{~Gy} / \mathrm{h}, \mathrm{P}=0.28 \mathrm{rad} / \mathrm{h}$.
5. The absorbed dose from gamma radiation was 10 rad , and from alpha radiation -20 rad .

Find the total equivalent dose if $\mathrm{K}_{\mathrm{g}}=1 ; \mathrm{K}_{\mathrm{a}}=20$.
Answer: $\mathrm{H}=410$ rem.
6. A point source of ${ }^{60} \mathrm{Co}$ is transported within 48 hours. Source activity $\mathrm{A}=5.4 \mathrm{mCi}$.

Determine the exposure dose that the forwarder can receive if he is at a distance of 2 m from the source $\left(\mathrm{K}_{\mathrm{g}}=1.29\right)$.
Answer: X = 0.08 R.
7. The maximum permissible absorbed dose received under the action of γ-radiation is $D_{g}=5 \times 10^{-2} \mathrm{~J} / \mathrm{kg}$. Find the absorbed energy of gamma photons if the mass of a person is 65 kg .
Answer: 3.25 J .
8. The maximum permissible dose for occupational exposure is $100 \mathrm{mrem} / \mathrm{wk}$.

Recalculate this value for a year. What dose are we talking about?
Answer: H = 5 mrem / year. Equivalent dose.
9. Find the equivalent dose (H) received from X -rays if the exposure dose X is $5 \mathrm{R}(\mathrm{f}=$ 0.9).

Answer: 4.5 rem.
10. Find the exposure dose X if the absorbed dose D is $30 \operatorname{rad}(f=0.8)$.

Answer: 37.5 R .
11. The maximum permissible absorbed dose received under the action of g-radiation is $\mathrm{H}_{\mathrm{g}}=5 \times 10^{-2} \mathrm{~J} / \mathrm{kg}$. Find the absorbed energy of gamma photons if the mass of a person is 70 kg .
Answer: 3.5 J .
12. Find the activity of the investigational drug taken in an amount of 0.01 mCi after 24 days if the half-life is $\mathrm{T}=48$ days.
Answer: 0.007 mCi .
13. Calculate the half-life if the decay constant is $\lambda=0.0348 \mathrm{yr}^{-1}$.

Answer: ≈ 20 years.

