Федеральное государственное бюджетное образовательное учреждение высшего образования «Красноярский государственный медицинский университет имени профессора В.Ф. Войно-Ясенецкого» МЗ РФ

Кафедра лучевой диагностики ИПО

Трёхмерное автоматизированное ультразвуковое исследование молочных желёз: факты и артефакты

Часть III

RadioGraphics

Three-dimensional Automated Breast US: Facts and Artifacts

Ingolf Karst 🖾, Christopher Henley, ம Nadine Gottschalk, Sara Floyd, Ellen B. Mendelson Выполнила:

Мартынова Е.А., ординатор 2-го года обучения специальности 31.08.11 «УЗД»

Красноярск, 2022 г

Актуальность

- В структуре онкологической заболеваемости женщин во всем мире рак молочной железы стоит на первом месте и на втором месте по смертности от рака у женщин
- Автоматизированное ультразвуковое исследование становится всё более интегрированным в повседневную практику методом визуализации молочных желёз, поэтому необходимость устранения артефактов, которые мешают интерпретации изображений метода, становится всё более важной
- Изучение методов обнаружения и последующего устранения артефактов может повысить эффективность метода и способность различать артефакты и истинную патологию

Понимание основных принципов автоматизированного УЗИ и процесса получения изображения является ключевым элементом в распознавании артефактов

Анализ и распознавание различных артефактов и их причин при трёхмерном автоматизированном ультразвуковом исследовании молочных желёз

поскольку отсканированная ткань
перекрывается в этих проекциях

Если акустическая тень визуализируется в одной проекции, например, в медиальной (MED), необходимо выполнение другой проекции (латеральной – LAT или передне-задней – AP) для того, чтобы отличить истинную патологию от артефакта

Использование второй проекции для устранения тени как артефакта только на одной проекции

Использование второй проекции для устранения тени как артефакта только на одной проекции

X

RIGHT MED 11:00 3CM FN

Периферическая тень в правой медиальной проекции в положении «11 часов», в 3 см от соска (желтая точка)

Тень представлена в виде гипоэхогенного участка неправильной формы на корональной (*Z*) плоскости, которая сопоставима с тенями на поперечной (*X*) и сагиттальной (*Y*) плоскостях

Использование второй проекции для устранения тени как артефакта только на одной проекции

Тень, наблюдаемая в проекции MED, расценивается как артефакт

Правая передне-задняя проекция, используемая как *вторая проекция* визуализации той же молочной железы. На «11 часах», в 3 см от соска визуализируется нормальная фиброгландулярная ткань молочной железы

Использование дополнительных плоскостей

Представлена верхняя часть молочной железы на корональной плоскости (*Z*) в левой медиальной проекции

Отмечена гипоэхогенная область неправильной формы в положении «10 часов», в 9 см от соска (желтая точка)

На этой единственной плоскости трудно исключить гипоэхогенное образование неправильной формы

Использование дополнительных плоскостей

TRANSVERSE

Увеличенное изображение в поперечной плоскости демонстрирует несколько чередующихся гиперэхогенных и гипоэхогенных горизонтальных линий с акустической тенью, параллельных коже

Гипоэхогенный участок на поперечной (X) плоскости и сагиттальной (Y) плоскости сопоставляется программным обеспечением с положением гипоэхогенного участка на корональной плоскости для интерпретации и дальнейшего анализа

Использование дополнительных плоскостей

• Комбинируя все три плоскости, можно установить, что гипоэхогенный участок, визуализируемый на корональной плоскости, соответствует акустической тени (от кожи до грудной клетки) на поперечных и сагиттальных плоскостях

 Данный артефакт вызван тем, что датчик проходит над небольшим участком кожи, на который не нанесен контактный лосьон: воздух между кожей и датчиком вызывает эту тень

Таким образом, с использованием дополнительных плоскостей (поперечной и сагиттальной) можно интерпретировать подозрительный участок на корональной плоскости как артефакт

Программно смоделированное вращение – программное обеспечение, симулирующее вращение датчика для визуализации молочной железы в радиальных и других плоскостях в режиме реального времени

Результат визуализации аналогичен результату использования датчика при рутинном ультразвуковом исследовании

ROTATE

TILT

AP

LEFT AP 6:00 3CM FN

Гипоэхогенный овальный участок в нижней центральной части молочной железы на корональной (Z) плоскости

Аналогичный участок отмечается на поперечной (X) и сагиттальной (Y) плоскостях

Использование программы симуляции вращения и наклона в радиальных плоскостях для оценки области затенения:

представлен тот же гипоэхогенный овальный участок, что и на предыдущей эхограмме

Вращение, моделируемое программным обеспечением

При симуляции вращения изображения вокруг вертикальной оси гипоэхогенный участок меняет свою форму по отношению к фиброгландулярной ткани, структурные изменения окружающих тканей отсутствуют

Зона интереса находится в фокусе изображения

- Х поперечная плоскость
- Y сагиттальная плоскость

Программное моделирование наклона

Результат такой же, как и при вращении вокруг вертикальной оси: очаговые образования не попадают в фокус, во всех плоскостях визуализируется акустическая тень

Симуляция изменения угла плоскости сканирования вокруг горизонтальной оси равноценна наклону датчика при рутинном ультразвуковом исследовании X – поперечная плоскость Y – сагиттальная плоскость

Трёхмерное УЗИ молочных желёз автоматизированное УЗИ Во время сканирования Фиксированное направление лучей можно менять угол (перпендикулярно коже), во время датчика по отношению к сканирования угол датчика по молочной железе отношению к молочной железе не изменяется Приближено к УЗИ Симуляция вращения

После получения изображений симуляция вращения позволяет привычным образом оценить ткани, окружающие зону интереса

Использование реконструированных программным обеспечением плоскостей

• Когда широкий ультразвуковой датчик перемещают по молочной железе снизу вверх, записываются изображения в **поперечной плоскости**

• При программной реконструкции вычисляются две дополнительные плоскости: *корональная и сагиттальная*

 В некоторых случаях сагиттальная плоскость, реконструированная с помощью программного обеспечения, может дать дополнительную информацию

Использование реконструированных программным обеспечением плоскостей. Артефакт

Рефракционная тень

Представлен участок изменённой эхоструктуры на реконструированной корональной (*Z*) плоскости в правой передне-задней проекции в положении «9 часов», в 3 см от соска (желтая точка)

Выделенная область соответствует множественным акустическим теням на поперечной (X) и сагиттальной (Y) плоскостях

Использование реконструированных программным обеспечением плоскостей. Артефакт

MAGNIFIED SAGITTAL (Y)

Увеличенное изображение сагиттальной плоскости

Рефракционная тень

Представлены множественные акустические тени, возникающие по краям жировых долек и других неровных поверхностей, когда они пересекаются с тканью

Использование реконструированных программным обеспечением плоскостей. Инвазивная лобулярная карцинома

<u>Плоскости:</u> (X) – поперечная, (Y) – сагиттальная, (Z) – корональная

Акустическая тень, вызванная злокачественным образованием

В отличие от рефракционных теней от ЗНО возникает одна акустическая тень

Выводы:

 Для устранения артефактов при автоматизированном ультразвуковом исследовании необходимо знание их основных принципов и общих закономерностей их появления

 Распознавание артефактов и их дифференциация от истинной патологии могут помочь в интерпретации изображений при автоматизированном ультразвуковом исследовании

 Использование методического подхода к анализу акустической тени может помочь специалисту устранить артефакты и избежать ложноположительных интерпретаций, что может привести к повышению специфичности метода

Список литературы:

Karst I. et al. Three-dimensional automated breast US: facts and artifacts //Radiographics. – 2019. – T. 39. – №. 4. – C. 913-931

Спасибо за внимание!