# Всероссийский конкурс рабочих тетрадей к практическим занятиям по дисциплинам

#### Профессионального цикла

#### высшего и среднего медицинского и фармацевтического образования

Дисциплина: ОП.09. Органическая химия

Специальность: 33.02.01 Фармация

Наименование рабочей тетради: «Белки. Пептиды»

Номинация: среднее профессиональное образование

**Авторы:** Жилкина Елена Сергеевна, преподаватель ВКК; Попова Дина Александровна, преподаватель

Образовательная организация: ОГБПОУ «Усольский медицинский техникум»

# МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ ИРКУТСКОЙ ОБЛАСТИ ОБЛАСТНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «УСОЛЬСКИЙ МЕДИЦИНСКИЙ ТЕХНИКУМ»

УТВЕРЖДАЮ

Заместитель директора организации по УР На заседании ЦМК№1

CESTAS 2028 r.

/И.В. Егорова/

СОГЛАСОВАНО

Протокол № 4 от 19.01.2021г.

Председатель Упил ТЕ.С.Жилкина/

## ОП.09. ОРГАНИЧЕСКАЯ ХИМИЯ

Белки. Пептиды

#### РАБОЧАЯ ТЕТРАДЬ

для студентов 1 курса на базе СОО, 2 курса на базе ООО специальности 33.02.01 Фармация

> Разработали: Е.С. Жилкина, преподаватель ВКК Д.А. Попова, преподаватель

г. Усолье-Сибирское 2021 год

#### **РЕЦЕНЗИЯ**

# на рабочую тетрадь по ОП.09. Органическая химия тема: «Белки. Пептиды»

для специальности 33.02.01 Фармация преподавателей ОГБПОУ «Усольский медицинский техникум» Жилкиной Елены Сергеевны и Поповой Дины Александровны

Рабочая тетрадь для студентов 1 курса на базе СОО, 2 курса на базе ООО специальности 33.02.01 Фармация разработана для обеспечения выполнений требований Федерального государственного образовательного стандарта к минимуму содержания и подготовки специалистов по специальности 33.02.01 Фармация.

Представленная разработка включает в себя: пояснительную записку; теоретическую и практическую части, а также список литературы.

Рабочая тетрадь предназначена для формирования у обучающихся учебной деятельности, интеллектуальных умений, обеспечивает самостоятельное добывание и усвоение знаний по теме: «Белки. Пептиды» общепрофессиональной дисциплины ОП.09. Органическая химия. Рабочая тетрадь позволяет выявить уровень знаний и умений обучающихся, а также способствует осознанному и прочному усвоению учебной информации через овладение навыками самостоятельной работы с учебной литературой.

Разработка соответствуют современным требованиям, и может быть рекомендована для практического применения в профессиональных образовательных организациях, реализующих программу подготовки специалистов среднего звена по специальности 33.02.01 Фармация (базовый уровень).

| Рецензент: | Sapues | Владиния | OF MENTINE CONTRACTOR   |
|------------|--------|----------|-------------------------|
|            |        |          | ( ) ( ) ( ) ( ) ( ) ( ) |
|            |        |          | COST CONTRACTOR         |
|            |        |          |                         |

#### Пояснительная записка

Рабочая тетрадь разработана на основе Федерального государственного образовательного стандарта по специальности среднего профессионального образования 33.02.01 Фармация и рабочей программы общепрофессиональной дисциплины ОП.09. Органическая химия ОГБПОУ «Усольский медицинский техникум».

Рабочая тетрадь предназначена для формирования у обучающихся учебной деятельности, интеллектуальных умений, обеспечивает самостоятельное добывание и усвоение знаний по теме: «Белки. Пептиды». Рабочая тетрадь позволяет выявить уровень знаний и умений обучающихся, а также способствует осознанному и прочному усвоению учебной информации через овладение навыками самостоятельной работы с учебной литературой.

На данную тему отводится 4 часа теоретических занятий и 4 – практических.

В результате освоения темы: «Белки. Пептиды» обучающийся должен

#### уметь:

- доказывать с помощью химических реакций химические свойства α-аминокислот и белков;
  - идентифицировать белки и пептиды по физико-химическим свойствам;
  - составлять формулы α-аминокислот, белков, пептидов и давать им названия;

#### знать:

- строение и реакционные способности α-аминокислот, белков, пептидов;
- способы получения α-аминокислот, белков, пептидов.

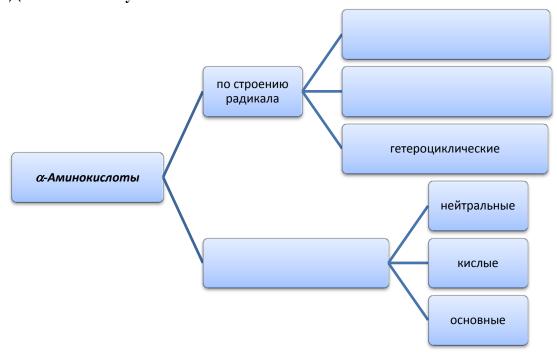
Также изучение темы способствует формированию общих (ОК) и профессиональных (ПК) компетенций:

- ПК 1.1. Организовывать прием, хранение лекарственных средств, лекарственного растительного сырья и товаров аптечного ассортимента в соответствии с требованиями нормативно-правовой базы
- ПК 1.6. Соблюдать правила санитарно-гигиенического режима, охраны труда, техники безопасности и противопожарной безопасности.
- ПК 2.1. Изготавливать лекарственные формы по рецептам и требованиям учреждений здравоохранения.
- ПК 2.2. Изготавливать внутриаптечную заготовку и фасовать лекарственные средства для последующей реализации.
- ПК 2.3. Владеть обязательными видами внутриаптечного контроля лекарственных средств.
- OK 2. Организовывать собственную деятельность, выбирать типовые методы и способы выполнения профессиональных задач, оценивать их эффективность и качество.
- ОК 3. Принимать решения в стандартных и нестандартных ситуациях и нести за них ответственность.

#### Методические рекомендации:

Рабочую тетрадь следует заполнять с теоретической части, которую необходимо заполнять в результате прослушивания теоретического материала или же при самостоятельной работе с учебной и дополнительной литературой.

После теоретического блока идет практический блок с заданиями и задачами, к которым имеются эталоны ответов, расположенные в приложениях.


**ТЕОРЕТИЧЕСКАЯ ЧАСТЬ.** Заполните данную часть при прослушивании лекции преподавателя или при самостоятельной работе с учебной и дополнительной литературой.

2. Заполните пропуски в таблице.

| Тривиальное<br>название  | Сокращенное обозначение | Формула                                                        |
|--------------------------|-------------------------|----------------------------------------------------------------|
|                          |                         | <b>ифатические</b>                                             |
| Глицин                   | Gly                     |                                                                |
|                          | Ala                     | CH <sub>3</sub> —CH(NH <sub>2</sub> )—COOH                     |
| Валин                    | Val                     |                                                                |
| Лейцин                   |                         | (CH <sub>3</sub> )CHCH <sub>2</sub> —CH(NH <sub>2</sub> )—COOH |
| Изолейцин                | Iie                     |                                                                |
|                          | Ser                     | HOCH <sub>2</sub> —CH(NH <sub>2</sub> )—COOH                   |
| Треонин                  |                         | CH <sub>3</sub> CH(OH)—CH(NH <sub>2</sub> )—COOH               |
|                          | Cys                     | HSCH <sub>2</sub> —CH(NH <sub>2</sub> )—COOH                   |
| Метионин                 | Met                     |                                                                |
| Аспарагиновая<br>кислота |                         | HOOCCH <sub>2</sub> —CH(NH <sub>2</sub> )—COOH                 |
| Глутаминовая<br>кислота  | Glu                     |                                                                |
|                          | Asn                     | H <sub>2</sub> NCOCH <sub>2</sub> —CH(NH <sub>2</sub> )—COOH   |
| Глутамин                 |                         |                                                                |
| Лизин                    | Lys                     |                                                                |

| Тривиальное<br>название | Сокращенное<br>обозначение | Формула                                                                                                |
|-------------------------|----------------------------|--------------------------------------------------------------------------------------------------------|
|                         | Arg                        | HN<br>H <sub>2</sub> N C-NH-CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> -CH(NH <sub>2</sub> )-COOH |
|                         | Apox                       | матические                                                                                             |
| Фенилаланин             |                            | CH <sub>2</sub> —CH(NH <sub>2</sub> )—COOH                                                             |
|                         | Tyr                        | HO—CH <sub>2</sub> —CH(NH <sub>2</sub> )—COOH                                                          |
|                         | Гетер                      | оциклические                                                                                           |
| Гистидин                |                            |                                                                                                        |
|                         | Trp                        | CH <sub>2</sub> —CH(NH <sub>2</sub> )—COOH  N H                                                        |
| Пролин                  | Pro                        |                                                                                                        |

#### 3. Дополните схему.



#### 4. Заполните пропуски.

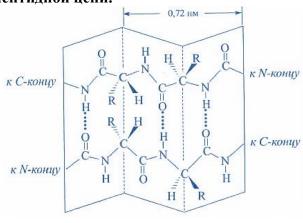
В молекулах всех  $\alpha$ -аминокислот, кроме глицина, атом C-2 содержит четыре разных заместителя, т.е. является \_\_\_\_\_\_\_. Благодаря этому  $\alpha$ -аминокислоты

| существуют в виде                       |                   | Отнесение амин          | нокислот к D-                 | или L-ряду проводят                         |
|-----------------------------------------|-------------------|-------------------------|-------------------------------|---------------------------------------------|
| по стереохимическому с                  | гандарту – глицер | оиновому альдег         | иду.                          |                                             |
| H <sub>2</sub> N - CH -                 | СООН              |                         |                               |                                             |
| α-аминоки                               | слота             | L-аминокисло            | эта                           | D-аминокислота                              |
|                                         |                   |                         |                               | жена в проекционной                         |
| формуле Фишера                          |                   |                         |                               |                                             |
| α-Аминокислоты – _                      |                   |                         | вещести                       | ва имеющие строение                         |
| внутренних солей. Мн температур от до _ |                   | оты, плавятся           | С                             | в диапазоне                                 |
|                                         |                   | пределяется             |                               | Лучше                                       |
| растворяются аминокис                   | лоты, содержащі   | ие дополнителы          | ные полярные                  | е группы, такие как                         |
| значительно                             |                   |                         |                               |                                             |
| практически                             |                   |                         |                               | _                                           |
| либо                                    |                   | на вкус. В то х         | же время, D-г.                | х энантиомеры – либо<br>лутаминовая кислота |
| , a ee L-                               | энантиомер имее   | т вкус                  |                               |                                             |
| Кислотно-основные                       |                   | ЕСКИЕ СВОЙ( минокислоты |                               |                                             |
| соединениями, поскольн                  |                   |                         |                               |                                             |
| (СООН) группы. В завис                  | симости от кисло  | тности среды ам         | инокислоты м                  | могут существовать в                        |
| виде катионов и анионов                 |                   |                         |                               |                                             |
| щелочная среда                          |                   | ральная среда           |                               | кислая среда                                |
|                                         | HO R              | -CH-COO-                | $H^+$                         |                                             |
|                                         | H <sup>+</sup>    | NH3+                    | HO-                           |                                             |
| анионная форма                          | ди                | полярный нон            |                               | катионная форма                             |
| С сильными кислотам                     | ми аминокислоты   | образуют соли г         | то аминогрупп                 | ie:                                         |
|                                         | + HCl             |                         |                               |                                             |
| глиция                                  | H.                | FR                      | дрохлорид і                   | лицина                                      |
| Со щелочами аминок                      |                   | соли по карбоко         | ильной групп                  | e:                                          |
| R-CH-CC                                 | HOC +             | >                       |                               | + H <sub>2</sub> O                          |
| NH <sub>2</sub>                         |                   |                         |                               | -                                           |
| -                                       |                   | CORL                    | BAHRIOVII OUG                 |                                             |
| Реакции аминогом                        | ппы При взаил     |                         | аминокислоть<br>зотистой кисл | и<br>потой аминокислоты                     |
|                                         |                   |                         |                               |                                             |
| использовался для                       |                   |                         | еления амин                   | окислот по объему                           |
| выделившегося                           | ·                 |                         |                               |                                             |
| D_CU.                                   | -COOR + RMC       |                         |                               | + 4                                         |
|                                         | -COOH + HNC       | 2                       |                               |                                             |
| NH <sub>2</sub>                         | <u> </u>          |                         |                               |                                             |

| <u> Реакции</u> | карбоксильно        | ой гру             | <u>ипы</u> . | (                | Co  | спиртами                  | I B    | J                                     | прис | сутствии |
|-----------------|---------------------|--------------------|--------------|------------------|-----|---------------------------|--------|---------------------------------------|------|----------|
|                 | 0                   | бразуются          | [            |                  |     |                           | В      | виде                                  | e co | олей по  |
| аминогруппе.    | Особенностью        | является           | то,          | ЧТО              | хло | роводород                 | являє  | тся                                   | не   | только   |
|                 | , но и              | [                  |              |                  |     | Эфир со с                 | вободн | ой ам                                 | ино  | группой  |
| образуется пр   | ои действии на солн |                    |              |                  |     |                           |        |                                       |      |          |
|                 | +                   | CH <sub>3</sub> OH | HCI (        | (r)<br>O         |     |                           | - N    | NH <sub>3</sub><br>lH <sub>4</sub> Cl | -    |          |
|                 | аминокислота        |                    |              |                  |     | рид метилог<br>аминокиело |        |                                       |      |          |
|                 |                     |                    |              |                  |     |                           |        |                                       |      |          |
|                 |                     |                    |              | гиловы<br>ииноки |     |                           |        |                                       |      |          |

5. Заполните таблицу.

| 5. Заполните            | гаолицу. |        |
|-------------------------|----------|--------|
| Качественные<br>реакции | Реагент  | Пример |
| Общие                   | 1)       |        |
| Оощие                   | 1)       |        |
|                         |          |        |
|                         |          |        |
|                         |          |        |
|                         |          |        |
|                         |          |        |
|                         |          |        |
|                         |          |        |
|                         | 2)       |        |
|                         |          |        |
|                         |          |        |
|                         |          |        |
|                         |          |        |
|                         |          |        |
|                         |          |        |
|                         |          |        |
|                         |          |        |
|                         |          |        |
| Частная для             |          |        |
| ароматических           |          |        |
| аминокислот             |          |        |
|                         |          |        |
|                         |          |        |
|                         |          |        |
|                         |          |        |
|                         |          |        |
|                         |          |        |
|                         |          |        |


$$H_2N-CH-C+OH+H+NH-CH-COOH$$
 $R^1$ 
 $R^2$ 
 $R^3$ 
 $N$ -конец
 $N$ -конец
 $N$ -сн-С-NH+CH+C-NH+CH-COOH
 $N$ -сн-С-NH+CH-COOH
 $N$ -сообые радикалы

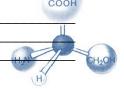
| <b>6.</b> Зап | 6. Запишите правила названия пептидов. |  |  |  |  |
|---------------|----------------------------------------|--|--|--|--|
|               |                                        |  |  |  |  |
|               |                                        |  |  |  |  |
|               |                                        |  |  |  |  |
|               |                                        |  |  |  |  |

7. Заполните таблицу.

| Структура<br>белка | Определение | Примечание |
|--------------------|-------------|------------|
| Первичная          |             |            |
| Вторичная          |             |            |

8. Подпишите названия конформаций пептидной цепи.




| . Раскройте понятие «денатурация белка». |  |
|------------------------------------------|--|
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |
|                                          |  |

### ПРАКТИЧЕСКАЯ ЧАСТЬ. Выполните предложенные задания.

1. Напишите структурные формулы и назовите эти аминокислоты по заместительной номенклатуре:

| а) лизин                |  |
|-------------------------|--|
|                         |  |
|                         |  |
|                         |  |
| б) серин                |  |
|                         |  |
|                         |  |
|                         |  |
| в) глутаминовая кислота |  |
|                         |  |
|                         |  |
|                         |  |

2. Какая аминокислота изображена в виде шаростержневой модели и к какому стереохимическому ряду она относится?



| 3. Напишите уравнение реакции лизина с избытком хлороводородной кислоты. В чем состоит особенность ее протекания сравнительно с такой же реакцией для глицина?       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                      |
| 4. Рассчитайте теоретический объем азота, который может выделиться при дезаминировании 8,9 г аланина.  Дано: Решение:                                                |
| Найти:                                                                                                                                                               |
|                                                                                                                                                                      |
| <ol> <li>Из какой α-аминокислоты образуется при декарбоксилировании биологически<br/>активный амин фенамин (1-фенилпропанамин-2)? Напишите схему реакции.</li> </ol> |
|                                                                                                                                                                      |
| 6. Приведите строение глицилсерилгистидина, представляющего трипептидный участок инсулина. Укажите в нем пептидные связи, N- и C-концы.                              |

| 7. При гидрол<br>Предложите вариа | пизе трипептида<br>анты строения эт | а образовались<br>гого пептида. | две α-амин               | окислоты —    | глицин і | и аланин. |
|-----------------------------------|-------------------------------------|---------------------------------|--------------------------|---------------|----------|-----------|
|                                   |                                     |                                 |                          |               |          |           |
|                                   |                                     |                                 |                          |               |          |           |
|                                   |                                     |                                 |                          |               |          |           |
|                                   |                                     |                                 |                          |               |          |           |
|                                   |                                     |                                 |                          |               |          |           |
| 8. Приведите с                    | строение структу                    | рных и простр                   | анственных               | изомеров алан | ина.     |           |
|                                   |                                     |                                 |                          |               |          |           |
|                                   |                                     |                                 |                          |               |          |           |
|                                   |                                     |                                 |                          |               |          |           |
|                                   |                                     |                                 |                          |               |          |           |
| 9. Напишите<br>хлороводорода. К   | е схему реакт<br>акова роль хлор    | ции этерифик<br>оводорода в это | ации вали<br>ой реакции? | на этанолом   | в прі    | исутствии |
|                                   |                                     |                                 |                          |               |          |           |
|                                   |                                     |                                 |                          |               |          |           |
|                                   |                                     |                                 |                          |               |          |           |
|                                   |                                     |                                 |                          |               |          |           |
|                                   |                                     |                                 |                          |               |          |           |

| 10. Назовите N- и C-концевые аминокислоты в аспартаме и приведите его структуру в виде проекционной формулы Фишера с учетом L-конфигурации обеих аминокислот.                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| виде проекционной формулы Фишера с учетом L-конфигурации обеих аминокислот.                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                 |
| Лабораторная работа                                                                                                                                                                                                                                                                             |
| <b>Опыт 1. Амфотерные свойства глицина.</b> В пробирку поместите 5 капель раствора                                                                                                                                                                                                              |
| глицина, добавьте 1 каплю раствора метилового красного. Раствор имеет желтую окраску (нейтральная среда). В пробирку добавьте 2 капли формалина. Наблюдайте появление красной окраски (кислая среда).  Вопросы.  1. Почему индикатор указывает на наличие нейтральной среды в растворе глицина? |
|                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                 |
| 2. Напишите схему реакции взаимодействия глицина с формальдегидом.                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                 |
| 3. Что обусловило изменение окраски индикатора?                                                                                                                                                                                                                                                 |
| 110 обусловило изменение окраски индикатора:                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                 |
| 4. Какое применение находит реакция аминокислот с формальдегидом (реакция «формольного титрования»)?                                                                                                                                                                                            |
| <del></del>                                                                                                                                                                                                                                                                                     |
| <b>Опыт 2. Свертывание белков при кипячении.</b> В пробирку поместите 5 капель раствора                                                                                                                                                                                                         |
| яичного белка и нагрейте до кипения. Содержимое пробирки охладите и попытайтесь                                                                                                                                                                                                                 |
| растворить его в воде.                                                                                                                                                                                                                                                                          |

| первичная структура?                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                       |
| 2. Как называется процесс свертывания белков?                                                                                                                                                                                                                                         |
| 3. Почему свернувшийся белок не растворяется в воде?                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                       |
| Опыт 3. Ксантопротеиновая реакция. В пробирку поместите 10 капель раство яичного белка и 2 капли концентрированной азотной кислоты. Смесь осторожно нагрейте появления желтого осадка и охладите. Добавьте по каплям раствор гидроксида натрия появления оранжевой окраски.  Вопросы. |
| 1. Какие аминокислоты можно обнаружить с помощью данной реакции? На приме соответствующей аминокислоты напишите реакцию ее взаимодействия с азотной кислотой                                                                                                                          |
|                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                       |
| 2 H                                                                                                                                                                                                                                                                                   |
| 2. Чем объясняется изменение желтой окраски на оранжевую после добавления щелочи Можно ли считать данную реакцию качественной на белок?                                                                                                                                               |
|                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                       |
| Опыт 4. Биуретовая реакция. В пробирку поместите 5 капель раствора яичного белка 5 капель раствора гидроксида натрия. Добавьте 1-2 капли раствора сульфата меди (1                                                                                                                    |
| Появляется красно-фиолетовая окраска. <i>Вопросы</i> .                                                                                                                                                                                                                                |
| 1. Напишите схему реакции биурета с гидроксидом меди (II).                                                                                                                                                                                                                            |

|      | Наличие какого структурного фрагмента в молекуле необходимо для положительной |
|------|-------------------------------------------------------------------------------|
| биур | стовой реакции?                                                               |
| _    |                                                                               |
| 3.   | Можно ли считать эту реакцию качественной на белок? Почему?                   |
| -    |                                                                               |
| _    |                                                                               |

#### Список литературы

- 1. Ерохин, Ю.М. Химия [Текст]: учеб. для сред. проф. учеб. заведений / Ю.М. Ерохин. М.: Академия, 2010. 384 с.
- 2. Зурабян, С.Э. Органическая химия [Текст]: учебник / С. Э. Зубарян, А.П. Лузин; под ред. Н.А. Тюкавкиной. М.: ГЭОТАР-Медиа, 2016. 384 с.
- 3. Интерактивный мультимедиа учебник ОРГАНИЧЕСКАЯ ХИМИЯ [Электронный ресурс]. Режим доступа: http://orgchem.ru. Загл. с экрана.
- 4. Мануйлов, А. В., Родионов, В. И. Основы химии. Интернет-учебник [Электронный ресурс]. Режим доступа: <a href="www.hemi.nsu.ru">www.hemi.nsu.ru</a>. Загл. с экрана.
- 5. Репетитор по химии [Текст] / под ред. А.С. Егорова. Ростов н/Д.: Феникс, 2011. 762 с.
- 6. Саенко, О.Е. Химия для колледжей [Текст]: учебник / О.Е. Саенко. Ростов н/Д.: Феникс, 2012.-282 с.
- 7. Химик. Сайт о химии [Электронный ресурс]. Режим доступа: <a href="http://xumuk.ru/">http://xumuk.ru/</a>. Загл. с экрана.