Introduction to **Titrimetric analysis**

Practicum. Topic № 1

Lecturer: prof. of the Department of Biochemistry of "Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University" Darya Rudenko

Why is it important to study chemistry?

- All objects around you are substances. <u>Nature, food, furnitures, technics, clothers,</u> <u>drugs are all substances.</u> The human body is a mix of many different substances and their interactions.
- Therefore, the knowledges about substances (matter), their properties and transformations, chemical's laws are most important for comprehension living systems.

KEEP CALM AND STUDY ON

What are substances made of?

- The substances can be pure or mixtures, it also can be gas, liquid or solid
- But the all substances (matter) are made of different little particles – <u>chemical elements</u>

All chemical elements of our Earth are in the <u>Periodic table</u>

1 / la									igns	-U	1111030						cincin	.5	大庆儿	17	\$10,701	x							18 / V	/IIIa
1 氫(H 1 hydrogen 1.0079 1s ¹	2 / Ila										alkalai metals	alkalin earths	e	lanthanoi	d	actinoid	transitio metals	n		1	3 / Illa	14	[/] IVa	15 /	Va	16 / \	√la	17 / VIIa	2 He helium 4.0026 1s ²	氦
3 鋰 Li 1 lithium ^{6.941} [He]2s ¹	4 途 Be beryllium 9.0122 [Hej2s ¹	皮 2		e e	atomic symb element na atomic weig electron configu	nu ol a ame ght uration	IM 元 oxidation :	志 ま atates			other metals	semi- metals		non- metals		halogens	noble gases			5 B bc 10 [He	研 3 9 0 10 12 12 12 12 12 12 12 12 12 12 12 12 12	6 C carbo 12.01 [He]2s ² 2	碳 4,2 n ¹	7 N ±3 nitrogel 14.007 [He]2s ² 2p ³	氮 3,5,4,2 n	8 O oxygen 15.999 [He]2s ² 2p ⁴	氧 -2	9 氟 F -1 fluorine 18.998 Hej2s ² 2p ⁵	10 Ne neon 20.180 [He]2s ² 2p ⁶	氖
11 纳 Na 1 sodium 22.990 [Nej3s ¹	12 Mg magnesiur 24.305 [Nej3s ²	美 2 n	3 / IIIb)	4 / IVb)	5 / \	/b	6 / V	lb	Solid 7 / VIIb	Liquid 8 / VI	IIb	Gas 9 / VIII	b	Synthetic	Unknow 11 / Ib	7010	12 / Ilb	1 A ali 26 [Ne	3	14 Si silicor 28.080 [Ne]3s ² 3	硅 4 5 p ²	15 P = phosph 30.974 [Ne]3s ² 3p ³	磷 ±3, 5 ,4 iorus	16 S ± sulfur 32.065 [Ne]3s ² 3p ⁴	硫 :2,4, 6	17 氛 CI ±1,3,5,7 chlorine ^{35.453} [Ne]3s ² 3p ⁵	18 Ar argon 39.948 [Ne]3s ² 3p ⁶	氩
19 卸 K 1 potassium 39.098 [Ar]4s ¹	20 Ca calcium ^{40.078} [Ar]4s ²	丐 2	21 金 Sc scandium 44.956 [Ar]4s ² 3d ¹	沆 3 t 4	22 Ti titanium ^{47.867} Ar]4s ² 3d ²	汰 2 4 V 5	23 V vanadiu 50.942 Ar]4s ² 3d ³	釩 5,3 m	24 Cr chromiu 51.996 [Ar]4s ¹ 3d ⁵	鉻 6, 3 ,2 m	25 孟 Mn _{7,6,4,2,3} manganese ^{54.938} [Ar]4s ² 3d ⁵	26 Fe iron 55.845 [Ar]4s ² 3d ⁶	鐵 2, 3	27 (1) Co (2) cobalt (58.933 [Ar]4s ² 3d ⁷	诂 2,3	28 錄 Ni 2,3 nickel ^{58.693} [Ar]4s ² 3d ⁸	29 3 Cu 2 copper 63.546 [Ar]4s ¹ 3d ¹⁰	同 2,1 Z 6 [/	30 辞 Zn 2 zinc 55.409 Ar]4s ² 3d ¹⁰	3 G ga 69 [Ar]	1 鎵 a 3 Illium .723 4s ² 3d ¹⁰ 4p ¹	32 Ge germa 72.64 [Ar]4s ² 3	鍺 4 anium ^{ქ104p2}	33 As arsenic 74.922 [Ar]4s ² 3d ¹⁰	種 ±3 ,5 ;	34 Se ± seleniur ^{78.96} [Ar]4s ² 3d ¹⁰	硒 2, 4 ,6 n ^{4p4}	35 溴 Br ±1,5 bromine ^{79.904} [Ar]4s ² 3d ¹⁰ 4p ⁵	36 Kr krypton ^{83.798} [Ar]4s ² 3d ¹⁰ 4	氪
37 敛 Rb 1 rubidium ^{85.468} [Krj5s ¹	38 金 Sr strontium ^{87.62} [Kr]5s ²	2	39 ∲ ¥ yttrium 88.906 [Kr]5s ² 4d ¹	3 3 2 9	40 a Zr zirconium 91.224 Krj5s ² 4d ²	浩 4 4 ┃ r s	41 ND niobium 92.906 Kr]5s ¹ 4d ⁴	鈮 5, 3	42 Mo 6,5 molybden 95.94 [Kr]5s ¹ 4d ⁵	鉬 ,4,3,2 um	43	44 Ru 2,3 rutheniu 101.07 [Kr]5s ¹ 4d ⁷	釕 ,4,6,8 IM	45 Rh 2,3 rhodium 102.91 [Kr]5s ¹ 4d ⁸	铑 3,4	46 纪 Pd 2,4 palladium 106.42 [Kr]4d ¹⁰	47 金 Ag silver 107.87 [Kr]5s ^{14d10}	限 4 1 C 1 [M	48 歸 Cd 2 cadmium 112.41 KrJ5s ² 4d ¹⁰	4 11 11 [Kr]	9	50 Sn 118.7 [Kr]5s ²⁴	錫 4,2 I J ^{105p2}	51 Sb antimor 121.76 [Kr]5s ² 4d ¹⁰	銻 ±3 ,5 ny	52 Te ± telluriun 127.60 [Kr]5s ² 4d ¹⁰	碲 :2, 4 ,6 n ^{5p4}	53 碘 ±1,5,7 iodine 126.90 KrJ5s ² 4d ¹⁰ 5p ⁵	54 Xe xenon 131.29 [Kr]5s ² 4d ¹⁰ 5	氜 ōp ⁶
55 绝 Cs 1 cesium 132.905 [Xe]6s ¹	56 Ba barium 137.327 [Xe]6s ²	貝 2	71 Lu lutetium 174.97 [Xe]6s ² 4f ¹⁴ 5d ¹	鲁 3 1 1 [72 Hf hafnium 178.49 Xej6s ² 4f ^{145d2}	洽 7 4 t 1 p	73 Ta antalun 180.95 Kej6s ² 4f ¹⁴⁵	鉭 5 n	74 W 6,5, tungster 183.84 [Xe]6s ² 4f ¹⁴ 5	鎢 4,3,2 1 d ⁴	75 錸 Re 7,6,4,2,-1 rhenium 186.21 [Xe]6s ² 4f ¹⁴ 5d ⁵	76 OS 2,3 osmium 190.23 [Xe]6s ² 4f ¹⁴ 5	鋨 ,4,6,8	77 f 17 2,3,4 iridium 192.22 [Xe]6s ² 4f ¹⁴ 5d ⁷	浓 4,6	78 鉑 Pt 2,4 platinum ^{195.08} [Xej6s ¹ 4f ¹⁴ 5d ⁹	79 3 Au 3 gold 196.97 [Xe]6s ¹ 4f ¹⁴ 5d ¹⁰	金 8,1 1 2 1 2	80 汞 Hg 2,1 mercury 200.59 Xej6s²4f ¹⁴ 5d ¹⁰	8 T th: 20 [Xe	1 金它 3,1 allium 4.38]6s ² 4f ¹⁴ 5d ¹⁰ 6p ¹	82 Pb lead 207.2 [Xe]6s ²⁴	金凸 4, 2 f ^{145d¹⁰6p²}	83 Bi bismutt 208.98 [Xe]6s ² 4f ¹⁴	鉍 3 ,5 n	84 Po poloniui [209] [Xe]6s ² 4f ¹⁴	金卜 4,2 m 5d ¹⁰ 6p ⁴	85	86 Rn radon [222] [Xe]6s ² 4f ¹⁴ 5	氡
87 釿 Fr 1 francium ^[223] [Rn]7s ¹	88 Ra radium [226] [Rn]7s ²	音 2	103 (j Lr lawrenciun [262] [Rn]7s ² 5f ¹⁴ 6d ¹	勞 3 n r [[104 Rf rutherfordiur [267] Rn]7s ² 5f ¹⁴ 6d ²	盧 ✓ m c	105 Db Jubniun 268] Rn]7s ^{25f146}	鉗 n id ³	106 Sg seaborg [271] [Rn]7s ² 5f ¹⁴ 6	遶 ium ₄	107	108 Hs hassium [277] [Rn]7s ² 5f ¹⁴ 6	鈱 id ⁶	109 Mt meitneriur [276] [Rn]7s ² 5f ¹⁴ 6d ⁷	麥 n	110 鍏 DS darmstadtium [281] [Rn]7s ^{15f146d⁹}	111 金 Rg roentgeniu [282] [Rn]7s ^{15f14} 6d ¹⁰	斎 1 (([[[[112	1 N [24 [Rr	13	114 FI flerov [289] [Rn]7s ² 5	鈇 ium f ^{146d107p2}	115 Mc moscov [289] [Rn]7s ² 5f ¹⁴	鏌 vium ⁴ 6d ¹⁰ 7p ³	116 LV livermoi [293] [Rn]7s ² 5f ¹⁴	<u>金文</u> rium 6d ¹⁰ 7p ⁴	117 石田 TS tennessine ^[294] Rn]7s ² 5f ¹⁴ 6d ¹⁰ 7p ⁵	118 Og oganess [294] [Rn]7s ² 5f ¹⁴ 6	奧 son sd ^{107p6}
57-70 lanthan 鑭系元素	ioids 素		57 1 La lanthanum 138.91 [Xe]6s ^{25d1}	闌 3 1 [1	58 \$ Ce 3 cerium 140.12 Xej6s²4f¹5d¹	請 3,4 ┃ 1 ₽	59 Pr praseody 140.91 Xej6s ² 4f ³	鐠 3 ,4 mium	60 Nd neodym 144.24 [Xe]6s ² 4f ⁴	釹 3 ium	61 卸 Pm 3 promethium [145] [Xe]6s ² 4f ⁵	62 Sm samariu ^{150.36} [Xe]6s ² 4f ⁶	釤 3 ,2 m	63 (1) Eu (1) europium 151.96 [Xe]6s ² 4f ⁷	詴 3 ,2	64 建 Gd 3 gadolinium 157.25 [Xe]6s ² 4f ⁷ 5d ¹	65 金 Tb 3 terbium ^{158.93} [Xe]6s ² 4f ⁹	就 8,4 1 P	66 銷 Dy 3 dysprosium 162.50 Xe]6s ² 4f ¹⁰	6 H hc 16 [Xe	7 欽 10 3 Imium 4.93 168 ² 41 ¹¹	68 Er erbiur 167.20 [Xe]6s ² 4	鉺 3 m 5 f ¹²	69 Tm thulium 168.93 [Xe]6s ² 4f ¹³	銩 3,2	70 Yb ytterbiu 173.04 [Xe]6s ² 4f ¹⁴	鐿 3 ,2 m			
actinoid 錒系元素	ds 素		89 AC actinium [227] [Rn]7s ² 6d ¹	阿(3 - 1 2	90 (1) Th thorium 232.04 Rn]7s ² 6d ²	土 9 4 日 月 2 月	91 Pa protactin 231.04 Rn]7s ² 5f ² 66	鏷 5,4 nium d ¹	92 U 6, uranium 238.03 [Rn]7s ² 5f ³ 60	鈾 5,4,3	93 鎿 Np 6,5,4,3 neptunium [237] [Rn]7s ² 5 ⁴⁶ d ¹	94 Pu 6, plutoniu [244] [Rn]7s ² 5f ⁶	鈈 5, 4 ,3 m	95 Am 6,5,4 americium [243] [Rn]7s ² 5f ⁷	湄 4,3 1	96 銅 Cm 3 curium [247] [Rn]7s ² 5f ⁷ 6d ¹	97	音 (1,3 (に 「「	98 翻 Cf 3 californium ^{251]} Rn]7s ^{25f¹⁰}	9 E eii [2! [Rr	9 鎄 S 3 nsteinium 52] J7s ^{25f1}	100 Fm fermit [257] [Rn]7s ² 5	鐨 3 Im f ¹²	101 Md mendele [258] [Rn]7s ² 5f ¹³	鉀 3 ,2 evium	102 No nobeliui [259] [Rn]7s ^{25f14}	鍩 3 ,2 m			

English-Chinese Periodic Table of Elements 英漢元素周期表

Solutions

The human body is a mainly variety of solutions

Solutions

 A solution is a system of variable composition, consisting of two or more components (solvent + solutes) and the products of their interaction

SOLVENT Liquid the solute dissolves in

Solute dissolved in solvent

Solutions

- A solvent is a component that does not change its state of aggregation upon dissolution (or the predominant component of a solution).
- A solute (dissolved substance) is a component whose molecules or ions are evenly distributed in the volume of the solvent.

Classification of solutions by aggregate state

The liquid solutions are:

- water of the seas and oceans, and even tap water;
- biological fluids with low-molecular and high-molecular substances dissolved in them

blood, lymph; sweat; gastric and intestinal juices; saliva; bile; cytosol; mitochondrial matrix; urine; cerebrospinal fluid...

and many other

Classification of solutions by solute particle structure

- <u>True solutions</u>
- (particle size 10⁻¹⁰ 10⁻⁹m)
- <u>Colloidal solutions</u>
 (particle size 10⁻⁹ 10⁻⁶m)
- <u>Solutions of high-</u> <u>molecular weight</u> <u>compounds</u>

particles distributed non-uniformly

particles distributed uniformly

VS

True solution

 True solution is solution in which particles of a solute are in water or other solvent in the form of molecules, atoms or ions. For example solutions of low-molecular weight compounds (salts, acids, alkalis).

This solutions are homogeneous mixture

Colloidal solutions

• Colloidal solutions are solutions related to dispersed systems, where the particles of the dispersed phase are in the dispersion medium in the form of micelles.

Colloidal solutions are heterogeneous mixture

What does mean "concentration"?

 In chemistry, concentration is the abundance of a constituent divided by the total volume of a mixture. A concentration can be any kind of chemical mixture, but most frequently solutes and solvents in solutions

 Several types of mathematical description can be distinguished

Ways of expressing concentration

Concentration	Formula	Definition
Mass fraction of solute (percentage) C (%)	$\omega = \frac{m_{e-ea}}{m_{p-pa}} \cdot 100\%$	C (%) is the ratio of the mass of the solute to the total mass of the solution. The mass fraction of a solute shows what mass of a substance is dissolved in 100 g of a solution
Molar concentration C (mol/l)	$C = \frac{n_{e-ea}}{V_{p-pa}} = \frac{m_{e-ea}}{V_{p-pa}M_{e-ea}}$	C (mol/L) is the ratio of the amount of solute to the volume of the solution. Molar concentration indicates the number of moles of a solute contained in 1 liter of solution
Molar equivalent concentration (normal concentration) C (1/z) (mol/l)	$C(1/z) = \frac{n(1/z)}{V} = \frac{m}{M(1/z)V}$	C (1/z) (mol/l) is the ratio of the amount of substance equivalents to the volume of the solution. The molar equivalent concentration indicates the number of mole equivalents of a solute contained in 1 liter of solution
Molal concentration Cm (mol/kg)	$C_m = \frac{n_{e-ea}}{m_{p-nr}}$	Cm (mol/kg) is the ratio of the amount of solute to the mass of the solvent. Molal concentration indicates the number of moles of a solute in 1000 g of solvent
Titer T (g/ml)	$T = \frac{m}{V_{(MI)}}$	T (g/ml) is the ratio of the mass of the solute to the volume of the solution, expressed in milliliters. The titer shows what mass of the substance is contained in 1 ml of solution

Tasks

- 1. Answer at the following questions:
- a) What is the "Periodic Table"? Why is it needed?
- b) What is the "solution", "solvent", "solute"?
- c) What do you know about ways of expressing solution concentration?

How to Calculate Molar Mass (Molecular Weight).mp4

2. Watch the video "How to calculate molar mass" (I sent it you) and calculate the molar

mass of the following compounds:

Tasks

a) N_2O_5 b) H_2SO_4 c) $AI(OH)_3$ d) $CuSO_4 \cdot 5H_2O$ e) $Fe_4[Fe(CN)_6]_3$ f) SCI_6 g) S_2CI_2 h) CI_2O_7 i) $Mg_3(PO_4)_2$ j) $MgSO_4 \cdot 7H_2O$ k) $CaSO_4 \cdot 2H_2O$ l) $K_2Cr_2O_7$ m) $KAI(SO_4)_2 \cdot 12H_2O$ n) $K_4[Fe(CN)_6]$

Contact

- You can send me the answer to my e-mail (<u>darya.taldykina@yandex.ru</u>)
- Please, indicate your name and the number of your group
- Best wishes for you, your course instructor is Darya Rudenko (prof. of the Department of Biochemistry of "Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University")