Redox Titrations. Permanganometry and iodometry methods

Practicum

Lecturer: aassistant of the Department of Biochemistry of "Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University" Darya Rudenko

KEEP CALM AND STUDY ON

- The concept of a Oxidation-reduction reactions
- The main reaction of the Redox Titration

What does mean "Oxidationreduction reactions"?

- Oxidation-reduction reactions (ORR) are chemical reactions that occur with a change in the oxidation state of atoms due to the redistribution of electrons between them
- The oxidation state is the conditional charge that an atom gets as a result of the donation or attachment of electrons. The process of giving an atom of electrons is called oxidation and the acceptance of electrons is called a reduction. The starting material containing the atom to be oxidized is called a reducing agent. An oxidizing agent is a substance in which a reducing atom is present, that is the atom that takes away electrons from another atom.

- An oxidizer (oxidizing agent, oxidant) is a substance that contains an atom which is capable of accepting electrons (electron acceptor). At the same time, its oxidation state decreases, and it transfers into the reduced form.
- <u>Oxidizer + e = conjugate reductant</u>
- A reductant (reducing agent) is a substance that contains an atom which is capable of donating electrons (electron donor). At the same time, its oxidation state increases, and it transfers into an oxidized form.
- Reductant e = conjugate oxidizer

! Please, don't confuse

the oxidizing agent takes
 electrons (OS down↓)
 from the reducing agent
 and therefore it is reduced

the reducing agent gives
electrons (OS up↑) to the
oxidizing agent and
therefore it is oxidizes

The most important oxidizing and reducing agents

Reductants		Oxidants	
Metals	Na, Ca, Zn	Halogens	F ₂ ; Cl ₂ ; I ₂ ; Br ₂
Hydrogen, carbon	H ₂ ; C	Permanganates, manganates	$KMnO_4, K_2MnO_4$
Carbon monoxide (II)	СО	Manganese oxide (IV)	MnO ₂
Hydrogen sulfide	H_2S	Chromates, dichromates	$K_2CrO_4, K_2Cr_2O_7$
Sulfur oxide (IV)	SO ₂	Nitric acid	HNO ₃
Sulfurous acid, its salts	H_2SO_3 ; Na ₂ SO ₃	Sulphuric acid	H ₂ SO ₄ конц.
Hydrogen halides	HCl; HBr; HI	Lead oxide (IV)	PbO ₂
Metal cations in lower	SnCl ₂ , FeCl ₂ ,	Hydrogen peroxide	H_2O_2
OS	$MnSO_4, Cr_2(SO_4)_3$	Monosulfuric acid	H_2SO_5
Nitrous acid	HNO ₂	Disulfuric acid	$H_2S_2O_8$
Ammonia	NH ₃	Metal cations in higher OS	FeCl ₃ ; TlCl ₃ ,
Hydrazine	NH ₂ NH ₂	Potassium chlorate	KClO ₃
Electrolysis cathode		Electrolysis anode	

Electronegativity

 Electronegativity is the ability of atoms to attract common pairs of valence electrons to themselves during the formation of a covalent bond in a compound.

Rules for determining the oxidation state (OS) of atoms in compounds:

- Fluorine «F» always has OS = -1 in all complex connections.
- Oxygen «O» has OS = -2 (Exeption: oxygen fluoride $O_{F_2}^{+2}$, peroxides: $H_2 O_2$, $Na_2 O_2$).
- Metals in compounds <u>always</u> have positive OS.
 OS coincides with the group number for metals of the main subgroups.

For metals of the **I group OS = +1**; for **II group OS = +2**; for **III group OS = +3**.

Beginning from the IV group OS of the metal can vary.

Rules for determining the oxidation state (OS) of atoms in compounds:

- Hydrogen «H» has OS = +1 (Exeption: metal hydrides: NaH, CaH2).
- In molecules of simple substances OS = 0 (Example: Cl₂⁰; O₃⁰; S₈⁰).
- The molecule is electrically neutral as a whole: the sum of the products of the oxidation states of all atoms in the compound by the number of atoms is zero.

Example:
$$H_2 S O_4$$
 (+1)·2 + (X)·1+ (-2)·4 = 0,
X = +6

Redox Titration

• A **redox titration** is a titration of a reducing agent by an oxidizing agent or titration of an oxidizing agent by a reducing agent. Typically, this type of titration involves a redox indicator or a potentiometer.

Types of Redox Titrations

Redox titrations are named according to the titrant that is used:

- *Bromometry* uses a bromine (Br₂) titrant.
- *Cerimetry* employs cerium(IV) salts.
- Dichrometry uses potassium dichromate (K₂Cr₂O₇).
- <u>*Iodometry*</u> uses iodine (I_2) .
- <u>Permanganometry</u> uses potassium permanganate (KMnO₄).

Permanganatometry: $MnO_4^- + 8H^+ + 5\bar{e} = Mn^{2+} + 4H_2O$

Permanganatometry

Working reagents of the method are:

- 1. potassium permanganate 0.02e KMnO₄ is a titrant and an indicator
- 2. oxalic acid 0.02e $H_2C_2O_4 \cdot 2H_2O$ or its salt sodium oxalate $Na_2C_2O_4$ is used to set the titer
- 3. For the same purpose, you can use the Mora's salt $(NH_4)_2 Fe(SO_4)_2$
- 4. H_2SO_4 is needed to create the necessary acidity of the reaction medium

Permanganatometry

 Justification for using an acidic reaction condition: firstly, in an acidic condition, potassium permanganate is a strong oxidizer. Secondly, in an acidic condition, the equivalence point is well established because an extra drop of the pink permanganate ion MnO_{4}^{-} titrant is clearly visible against the background of the resulting colorless manganese Mn²⁺ ion . In neutral and alkaline conditions we have other reduction products with other colours.

Iodometry

The main reaction of the method: $I_2 + 2\bar{e} \rightleftharpoons 2I^- \qquad \phi^o (I_2/2I^-) = + 0,54V$

lodometry

- Working solutions of the method are a solution of iodine 0.1e I_2 (used as a titrant and as an auxiliary reagent), a solution of potassium iodide 0.1e KI (used as a solvent for and as an auxiliary reagent), a solution of sodium thiosulfate $Na_2S_2O_3$ 0.1e (used as a titrant), it also specifies the titer of I_2 .
- Starch is used as an *indicator* in iodometry, which is colored blue in the presence of iodine.

Task 2: determine the oxidizing agent and reducing agent in the reactions below

a)
$$2Fe^{0} + 3Cl_{2}^{0} = 2Fe^{+3}Cl_{3}^{-1}$$

Firstly to find all OS

We can see that **OS** (Fe) was 0 and its conversion to +3. So **OS** (Fe) goes up \uparrow . This means that Fe donates electrons. So, Fe is a **reducing agent** We can see that **OS** (Cl_2) was **0** and its conversion to **-1**. So **OS** (Cl_2) goes down \downarrow . This means that Cl_2 accepts electrons. So, Cl_2 is a **oxidizng agent**

- b) $2AI + 3S = AI_2S_3$
- c) $4Li + O_2 = 2Li_2O$
- d) $8HNO_3 + 3H_2S = 3H_2SO_4 + 8NO + 4H_2O$
- e) $3Cl_2 + 6KOH = 5KCI + KCIO_3 + 3H_2O$
- f) $2KMnO_4 + 5KNO_2 + 3H_2SO_4 = K_2SO_4 + 2MnSO_4 + 5KNO_3 + 3H_2O$